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P L A N E  P R O B L E M  O F  A S Y M M E T R I C A L  W A V E  I M P A C T  O N  A N  E L A S T I C  P L A T E  

A. A. Korobkin and T.  I. Khabakhpasheva UDC 532.58 

The problem of wave impact on the edge of an elastic horizontal plate is studied within the 
framework of the Wagner approach using the normal-modes method. The plate is governed 
by the Euler beam equation with simply supported ends. The liquid is assumed to be ideal 
and incompressible. The problem is coupled: the elastic and hydrodynamic characteristics of 
the impact process and the dimension of the contact region should be found simultaneously. 
An algorithm that permits a detailed study of the impact on an elastic plate is proposed. The 
phenomenon of unlimited increase of hydrodynamic loads owing to the plate flezibility (blockage) 
is revealed for fairly long plates. 

I n t r o d u c t i o n .  We consider a plane unsteady problem of a vertical impact of the crest of a wave on the 
edge of an elastic horizontal plate. Korobkin [1] solved the problem in a single-mode approximation. For fairly 
long plates, the phenomenon of unlimited increase of hydrodynamic loads on the plate only owing to the plate 
flexibility was found. This phenomenon, which is called blockage, is of doubtless interest in connection with 
its importance for application. To treat this phenomenon in detail, it is necessary to perform calculations by a 
fuller model in which the high modes of free oscillations of the plate should be taken into account. The method 
described in [1] allows one to carry out such calculations only on modern fast computers. In the present paper, 
we employed the new method that  is developed for a numerical study of the central wave impact on a plate 
in [2] and is based on the concepts of [1]. This numerical algorithm permits one to carry out PC calculations, 
and hence to examine in detail the role of the elastic effects of water impact. 

With other conditions being equal, the duration of the impact on the edge of a plate is longer than that 
of the central impact [3]. This leads to the fact that the plate--liquid interaction is expressed more strikingly in 
the impact on its edge than on the center. These phenomena, which we shall describe below, were not found 
in the case of a central impact. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  At the initial moment of time (t ~ "- 0) the crest of a wave touches 
the edge of an elastic plate, and this edge is assumed to the origin of the Cartesian coordinate system x~Oy ~ 
(Fig. 1). The velocity of the liquid particles is equal to V and is directed upward along the normal to the 
undeformed surface of the plate (yl = 0 and 0 < z I < 2L). The dimensional variables are primed. The 
wavelength is assumed to be much larger than the size of the plate, and the wave profile in the vicinity of 
the coordinate origin can, therefore, be approximated by a parabolic contour y~ = -x~2/(2R), where R is the 
curvature radius at the wave crest. For long waves, we have R :~ L. With t ~ > 0, the liquid strikes the plate. 
The impact stage is completed at the moment T. ~, when the plate is completely wetted. 

It is required to determine the elastic deformations of the plate, the bending-stress distribution in it, 
and the dimension of the contact region under the same assumptions as in [2], except the flow symmetry. 
In addition, it is assumed that  the dimension of the wetted part of the plate is described by the single 
function d(t~), which is unknown beforehand and should be determined simultaneously with fluid-flow and 
beam-deflection calculations at each moment, with d(0) = 0 and d(T.  ~) = 2L. This assumption means that 
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the liquid adjoins to the plate  in the contact region 0 < x' < d(t') irrespective of the pressure in this region, 
i.e., cavitational phenomena  are ignored. 

At the initial stage of impact  on the weakly curved surfaces (r << 1), the equations that  describe the 
flow of a liquid and the deformation of an elastic body and the boundary conditions on a free surface and 
in the contact region can be linearized [2]. Also, the boundary conditions can be shifted to the yt = 0 line. 
Despite the linearization, the  problem, however, remains nonlinear, because one needs to determine not only 
the hydrodynamic and elastic characteristics but also the dimension of the contact region. 

To consider the problem in dimensionless variables, we choose the same scales of variation of the 
variables as those in the case of a central impact [2]. All the dimensionless parameters in the formulation of 
the problem do not exceed unity. The notation of the dimensionless variables is primeless. 

The formulation of the  problem has the form 

02w 04w 
' ~ ~  + ~-g-~4 = P( ~:, o, t) 

w = w x z = 0  ( x = 0 ,  z = 2 ,  t / > 0 ) ,  

~ = 0  ( ~ = o ,  ~ < 0 ,  ~ > r  

( 0 < x < 2 ,  t > 0 ) ;  (1) 

w = w t = O  ( O < z < 2 ,  t = o ) ;  (2) 

p = - ~ ,  (y <~ 0); (3) 

r + ~yy = 0 (y < 0); (4) 

~ = - 1  + w,(~, t )  [y = 0, 0 < �9 < cCt)]; (5) 

--, o (z2 + y2 __, cr (6) 

Here p(x, y, t) is the pressure of the liquid, the function w(x, t) determines the beam deflection at the point 
with the z coordinate at the  moment  t, and ~ ( z , y , t )  is the velocity potential. The  interval of the fluid 
boundary y = 0, 0 < x < c(t) corresponds to the contact region, and the semi-infinite intervals y = 0, z < 0 
and y = 0, a(x, t) correspond to the free surface. The distribution of the bending stresses in the beam a(z,  t) 
is determined by the formula a(z ,  t) = zw==(x, t)/2, where the variable z varies over the thickness of the beam 
(z = - 1  corresponds to its lower wetted side, and z = +1 to the upper  side in the largest-thickness sites). 
The dimensionless parameters  a and fl [see [2]) are equal to 

MB EJ 
pL ' pL(RV) 2" 

The impact stage ends at the moment  T,,  when c(T,) = 2. The formulation of problem (1)-(6) should 
be supplemented by the equation for the function c(t). This equation follows from the condition that  the 
displacements of liquid particles in the neighborhood of the moving point of contact x = c(t) are bounded 
and has the form [1] 

x/2 

t =  + f sin 20w[c(t) sin s 0, t] dO. (7) 
16 7r 

0 

Problem (1)-(7) is studied using the normal modes method,  which was described in detail in [2]. 

783 



M e t h o d  of  N o r m a l  M o d e s .  Within the framework of this method,  the beam deflection to(z, t) and 
the velocity potential ~(x,  0, t) on the part of the liquid boundary y = 0, 0 < x < 2 are found in the form of 
series in the eigenfunctions g,n(x) of the problems of free oscillations of the beam with homogeneous boundary 
conditions for these functions and their second derivatives for z = 0 and x = 2 (see [2, formulas (13) and 
(14)1): 

c o  o o  

w(~, 1) = ~ a.(t)r ~(~, 0,t) = ~ bn(t)r (8) 
n = l  n = l  

After normalization for a simply supported beam, we find tha t  r  = sin(~nx) and An = ( rn ) /2 ,  where 
n = 1, 2, 3 , . . .  are eigenvalues. With allowance for (5), Eqs. (8) yield 

c(t) 

bn(t) = / r162 (9) 
0 

Substituting the representations (8) in the beam equation (1) and taking into consideration (3) and (9), for 
the generalized coordinates an(t) and bn(t) we obtain the equation 

~an +/'n + ~ 4 a .  = 0. (10) 

The point denotes the  derivative in time. In this equation, the  quantities bn depend on the derivatives am, 
where m = 1, 2, 3 , . . . ,  and on the dimension of the contact region c. 

In this case, it is convenient to introduce the new harmonic functions ~on(x, y, c) as the solutions of the 
boundary-value problem 

02~o,~ 0~on 
0 7  + ~ = 0 (y < 0); (11) 

~ . = 0  [ y = o , ~ < o , x > c ( t ) ] ,  0 ~  oy = C"(x) [y = o, 0 < �9 < c(t)]; (12) 

~o. --. 0 (x 2 + y2 __, oo) (13) 

with integrable singularities of the first derivatives near the boundary points y = 0 and x = 0 and y = 0 and 
z = c. Here n = 0, 1, 2 , . . .  and C0(x) ~ 1. After the boundary-value problem (11)-(13) is solved, equalities 
(5), (8), and (9) give 

~,(x,0,t) = -~0(x ,0 ,c )  + ~ a.Ct)~.Cx, 0, c), b.,(t)=-fro(c) + ~ i;,,(t)Sn,n(c); (14) 
n = l  n = l  

c 

/ . .(c) = ] ~0(x, 0, c)r d~; (15) 
0 

c 

Shin(c) = ] ~o,(x, 0, c)r  dx. (16) 
0 

The added-mass matr ix S with the elements Shin(c), n, m = 1, 2 , . . .  is symmetric,  which follows from Green's 
second integral theorem. 

We introduce the auxiliary vector d = (d l ,d2 ,d3 , . . . ) t ,  where dn = (ann + bn)/(~)~4), the vectors 
a = (al,a2, a3,...)t and f = (f1(c),f2(c),fs(c),. . .)t, and the diagonal matrix D = diag {)~4, ~2,4 )~3,--4 .} by 
means of which Eqs. (10) can be rewritten in matrix form: 

~=dadt " (aI + S)- l ( /3Dd + f), ~=-dddt a. (17) 

The right-hand sides in (17) depend on a, d, and c and do not depend on the  t ime 1; therefore, it 
is convenient to choose the quant i ty  c as the new independent  variable, 0 ~< c ~< 2. Here the new required 
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function t = t(c) appears as the differential equation which follows from (7) and has the form [1] 

dt 5cl8 + (a, rc(C)) 
dc Q(c, a,/Q, Q(c ,a ,a)  = 1 - (a, F(c)) (18) 

The components of the vectors r (c )  and re(c)  are given by the formulas 

,q2 ,q2 

r.(c) 4 f s in20r ' r=(c) 4 f sin40 , . = -- = -- r  0) dO. 
71" 71" 

0 0 

Multiplying each equation of system (17) by dt/dc and making allowance for (18), we find 

da 
d--~ = F(c, d)Q(c, a, F(c, d)); (19) 

dd 
- aQ(c ,a ,F (c ,d ) ) ,  (20) 

dc 

where F(c, d) = ( h i  + aeS(c)) - l ( /3Dd + f(c)). System (18)-(20) is solved numerically under the zero initial 
conditions 

a = 0 ,  d = 0 ,  t = 0  (c = 0). (21) 

The derivatives h, ( t )  are determined by the formula h,, = F,(c ,  d). 
It is noteworthy tha t  the form of the Cauchy problem (18)-(21) coincides with the form of the 

corresponding problem on the  central wave impact on an elastic plate. However, the terms entering system 
(18)-(20) are determined by other formulas and should be investigated independently. The presented 
formulation of the problem remains valid under any conditions for support ing the beam ends. 

The direct calculations yield 

Anc 
F.(c)  = sinCJ0(~) + cos~Jl(~), ~ = 2 ' (22) 

( 1 ~J1 ( 0 )  r.o(c) -- ~. ~, cos ~J0ff) - sin ~J1 if) - ~ cos 

for the case of a simply suppor ted beam. 
In a numerical solution of the Cauchy problem (18)-(21), it is necessary to invert the matrix S at 

each step on c, where 0 < c ~< 2. Therefore, the possibility itself of the solution of the problem is mainly 
determined by the effectiveness of calculation of the functions S.m(c) and fro(c), where m, n = 1, 2, 3, . . . .  

A d d e d - M a s s  M a t r i x .  The  functions fro(c) and S.m(c) are determined by formulas (15) and (16). 
Substituting era(x) = sin Amx in them and integrating by parts with allowance for the equalities ~ . (0 ,  0, c) = 
~o,(c, 0, c) = 0, where n = 0, 1, 2, 3 , . . . ,  we obtain 

C 

fro(c) = ~m 
0 

C 

1 f cos(~m~)-~ (~, o, ~) ~/~. S.m(~) = 
0 

The derivatives in the last integrals equal 

o ~ z u  dr 

0~o0 (x, O, c) - c/2 - x 

for 0 < x < c [3]; in particular,  

(23) 

(24) 

(25) 

(26) 
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Calculating the integral in (23) with allowance for (26), we have 

f ro (c ) -  7rc2 sinAjl(A),  A = AmC 
4A ~ (27) 

The determination of the integrals (24) and (25) for n = I, 2, 3,... is not trivial, and therefore we shall 
give it below. It is convenient to introduce the new integration variables x -- c(( + I)/2 and p = c(a + i)/2 
into (24) and (25), respectively. We obtain 

S.~,(c) 
4~A , I -/~-ff'~ ~ - ( 

--1 V ~ ~ --I 

where A = A.,c/2 and ( = A,,c/2. Using the expansions of the sums of trigonometrical functions and the 
parity properties of the Hilbert transformation relative to the finite interval, we find 

s . . ( c ) - -  ~ c o s ~ c o s ( S ~ ' ~ - s i n ~ s ~ n r  , 

1 1 

S(~  ] ] ) ~ v . p .  d~ d~; 
V l - ~  - -  --1 

1 1 

= / / 

We first calculate the internal integral in (28). To do this, we use the expansion [4] 
OO 

s in (~  = 2 Y~(--1)kJ2~+l(()T2k+l(~) (--1 ~< ~ ~< 1) 
k=0 

and the orthogonality of the Chebyshev polynomials Tn(~). We obtain 

O-2 s i n  
oo 

vq d~ -~s,(r d)~(-1)kA~+,(Ou~(~),  V.p. = - 

O" - -  ~ k=O 
- I  

where Ut(() are the second-kind Chebyshev polynomials. Substitution of the last expansion in (28) with 
allowance for the value of the integral 

1 

-I 

gives 

= ~(-1)k(2k + 1)J2k+l(A) 

OO 
2'r2 )-'~(2k + 1)J2k+1(()J2k+1(A). S(~) = -Ir~J~ + ~ k=0 

The last series is tabular [5], which allows us to write 
2 ~A 

S(~! = r _--ff-z~[AJo(A)J~(r CJo(C)A(A)]. 

In particular, for ( = A we have 

lr2)t j2 
s(la ) = -lr2Jo(A)Jl(A) + " ~ - (  o( ) + j2(A)). 

The integrals in (29) are calculated similarly: 

~2~ bs,(~)so(O - (s,(()So(~)]; 

(30) 

(31) 

.(32) 
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----{-(J02(A) + Jr(A)). (33) 

The Bessel functions in (22), (27), and (30)-(33) are calculated with the use of their polynomial 
approximations [4]. 

H y d r o d y n a m i c  I m p a c t  Force. After the solution of the Cauchy problem (18)-(21), the plate 
deflection is determined by formula (8), and the distribution of the bending stresses by the formula 

--'8" ~_~ n2a,~(t)si n r z 
a = l  

In dimensionless variables, the force acting on the plate from the side of the liquid is determined by 
the integral 

F( t )  = - / ~t(x ,  O, t) dz, 
0 

and the scale of force is equal to pV2R. With allowance 
liquid boundary y = O, formula (34) gives 

d 
F( t )  = -~-~q(t), q( t )=  

(34) 

for the continuity of the velocity potential at the 

c(t) 

/ 0, t) (35) 
0 

In the impact stage, the function q(t) can be calculated with the use of expansion (8), where b,,(t) = ~4,d, ,  ( t ) -  
adn(t). This expansion can be differentiated termwise with respect to t, but the resulting series converges very 
slowly, and this does not allow one to perform calculations directly by formula (34). Therefore, one needs to 
use (35): to calculate first the function q(t) and then to differentiate it numerically with respect to the time. 

We determine the function q(t) independently, using the method of [3]. We consider a perturbed flow 
of a liquid far from the contact region. As the scale of length increases, the spot of contact becomes a point, 
and, in the first approximation, conditions (5) at the boundary of the flow region can be replaced by the single 
condition [3] 

v = (y  = o) ,  

where 5(x) is the Dirac delta-function. As y ~ -oo  and z = 0, the solution of Eq. (4) with this boundary 
condition gives 

~y(O, y, ~) ... q(t) 
~ry2 " 

As y --* -oo ,  the vertical velocity component ~ ( 0 ,  y, t) also can be determined by solving the problem relative 
to the displacements of the liquid particles [1]. We have 

~ y ( O , y , t ) ~  1 d ~(t) 

0 

Comparing the last two asymptotic formulas, we obtain 

r 

q ( t ) = -  / X / r ~ - a ) ( 1 - w t ( a , t ) ) d a .  
0 

Using the representation of w in the form of series (8), we rewrite the expression for q(t) as follows: 

oo c 

5 2  = am(t)sm( )- 8 r  sin(c) = f (36) 
m----1 0 
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In our case, @,,(c) -- sin A,,~r and A = ~rrn/2, and hence 

s,,(c) = __c sin 1 - -  �9 
r n  

It is seen that  sin(c) = O(m -3/2) as m ~ co. It was shown in [2] that  am(t) = O(m -2) as m ~ co, and 
therefore the series in (36) converges quite rapidly and can be found numerically. For an undeformable plate, 
when w(z, t) =_ O, Eq. (7) yields cR(t) --" (16t/5) 1/2. The quantities related to the case of a rigid plate have 
the subscript R. We find ql~(t) = -(~r/8)c~(t)  from (36), and hence qR(t) = -(2/5)~rt and FR(t) = 27r/5. 

For small times (t << 1), the elasticity of the plate can be ignored, and therefore F(O) = FR(0). The 
ratio F(t)/FR(t)  is specified by the formula 

= - _ 

71" n = l  n 

used in calculations. 
Resu l t s  o f  a N u m e r i c a l  Ana lys i s .  The Cauchy problem (18)-(21) is solved numerically by the 

fourth-order Runge-Kut ta  method with a constant step relative to the variable c. The choice of the step was 
considered at great length in [2]. However, this approach entails difficulties at small velocities of the contact 
point de~dr. In this case, small variations of c gives rise to significant changes in the function t(c). For large 
values of the derivative dt/dc, the  following procedure was applied: if dt/dc < 3, calculations were performed 
by the model (18)-(20) with the independent variable c; otherwise the t ime t was used as the independent 
v-~riable and calculations were done with the use of the model (17) with an additional equation for c(t): 

dc 1 

The time step was assumed to be equal to that  relative to c. As soon as the velocity of extension of the contact 
region increased up to 1/3, we returned to the initial model. 

The problem was solved for a = 0.157 and/~ -- 0.04. These values of the parameters correspond to 
the impact on the edge of a plate of thickness 1 cm and length 1 m and made from steel (Pb = 7850 kg/m 3, 
E = 21 �9 101~ N / m  2) by the wave crest for which product R V  = 30 m2/sec (e.g., R -- 10 m and v = 3 m/see 
or R = 20 m and v = 1.5 m/sec).  We note that the use of the model of an incompressible fluid is justified 
in the case where the duration of the impact stage [it is of the order of L2/(RV)] exceeds considerably the 
duration of the acoustic stage of impact (it is of the order of Ta~ = RV/c~ [6], where co is the sound velocity 
in a quiescent liquid under normal conditions). In the case considered, we have T = 625Tar and therefore 
ignoring the acoustic effects is justified. 

Figure 2a shows the dependence of the size of the contact region c on the time t, calculated in the 
one-mode approximation (curve 1) and with allowance for the first twenty modes (curve 2). Clearly, the one- 
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mode approximation gives correct insight into the enlargement of the wetted part of the plate on impact. 
Similar curves, constructed with the use of five or more modes, practically coincide with curve 2. However. 
to calculate the "inverse rate of wetting" (dt/dc)(t), it is necessary to use the larger number of modes, the 
one-mode approximation gives the incorrect rate of wetting of the plate. Figure 2b shows the dependence of 
dt/dc on the time, which was found with the use of the first five modes (curve 1) and of the first ten modes 
(curve 2). The curves are in agreement with each other outside the interval 1 < t < 1.2. Inside this interval, 
the derivative d~./dc changes abruptly and takes the maximum value. For a good approximation of the inverse 
rate of wetting, it is necessary to take into account ten modes, because the cMculations with a smaller number 
of modes give the underestimated values of the maximum of dt/dc. The increase in the number of modes allows 
one to clarify the details of variation of the rate of wetting with time, which can be considered insignificant. 
In particular, the maximum of the derivative dt/dc and the width of the region of abrupt changes in dt/dc, 
found with the use of ten modes, are almost the same. It means that the complex shape of curve 2 in Fig. 2b 
is not caused by the errors of the numerical calculation but reflects the irregular character of the interaction 
between the elastic surface and the liquid on impact. 

The process of elastic-plate wetting on impact can be described as follows. In the initial stage, the rate 
of wetting exceeds significantly the impact velocity and decreases slowly with time until the contact region 
reaches the dimension 1.2L. Here the rate of wetting exceeds 15 m/sec. Further, the rate of wetting drops 
sharply to 4 m/sec owing to the elastic properties of the body and becomes comparable with the impact 
velocity. For undeformable bodies, this effect was not observed [3]. The low rate of wetting does not occur for 
long, and it then increases and becomes unbounded at the end of the impact stage. 

The force F(t)  that  acts from the side of the liquid on the plate, is approximately proportional to the 
dimension of the contact region c(t), the rate of its expansion dc/dt, and the impact velocity [see (37)]. At the 
initial stage, the rate of wetting is high, which explains considerable hydrodynamic loads on the plate. These 
loads cause the plate deflection and, in particular, a decrease in the local impact velocity v(x, t) = 1 - wt(z, t). 
Here the rate of wetting decreases, as a portion of the liquid follows the plate deflection, instead of the 
propagation along the plate. For soft plates with a small value of the parameter ~, the rate of wetting can 
fall off substantially. To explain the drastic character of variation of this rate, we calculate the periods Tn of 
the eigenoscillations of the plate in a vacuum. We have Tn = T1/n 2 and T1 = (8/7r)(c~/~) 1/2 in dimensionless 
variables, and hence T1 .~ 16, T2 ~ 4, T3 ~ 2, T4 ~ 1, and T5 ~ 2/3. As is seen, the first three modes cannot 
be responsible for the details of the process, because the duration of the impact stage is less than 2. The 
distinguishing features of the impact process at this stage are due to higher modes, starting with the fourth 
mode. 

The model used is valid only in the case where the rate dc/dt is positive and finite. If the rate of wetting 
vanishes and then becomes negative, the liquid particles from the contact region reaches the free surface, and 
a vortex layer, which is ignored in the present model, is formed. If the rate of wetting grows and becomes 
comparable with the sound velocity in the liquid, the assumption of fluid incompressibility becomes invalid 
and it is necessary to consider the more complicated acoustic approximation. Figure 2b shows that in the 
middle of the impact stage the rate of wetting falls off substantially but remains positive. Further, the rate 
of wetting increases unboundedly (dt/dc ---, 0). It is important to note that c. < 2, where c. is such that 
(dt/dc)(c,) = 0. In this case, the model does not allow one to describe the impact stage completely; at the 
end of the impact stage the velocity of extension of the contact region becomes so large that acoustic effects 
should be included. 

The force that  acts on the plate from the side of the liquid is shown in Fig. 3a as a function of the 
dimcnsion of the contact region c. In the calculations by formula (37), the first twenty modes were used. It 
is seen that the hydrodynamic loads grow infinitely as c ---* c.. This phenomenon is called blockage. In the 
blockage owing to the elastic deformations of the plate, the velocity of the contact point increases, which 
leads to the unbounded growth of hydrodynamic loads. The blockage was not observed in the case of a central 
impact, i.e., the site of impact is determining for this phenomenon. 

The resisting force also varies abruptly in the section of abrupt change of the derivative (dt/dc)(t) 
(Fig. 2b) and takes negative values (see Fig. 3a). The latter indicates the possibility of cavitational phenomena 
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in the contact region of the liquid and the elastic plate. We note that cavitational phenomena are not observed 
in the impact of undeformable plates. 

It is natural to assume that the character of the interaction of an elastic plate with a liquid in the 
impact is basically determined by the dynamic rigidity of the plate/~. The variation of the derivative (dt/dc)(Q 
in time for//--- 0.02 (curve 1) and ~ / -  0.06 (curve 2) is plotted in Fig. 3b. The calculations were carried out 
for the first ten modes; as before, the parameter c~ equals 0.157. The transition from/~ = 0.04 to the case 
/ / =  0.02 means an increase of the impact velocity by a factor of ,Cry, with other values being unchanged, and 
the transition to the case ~ = 0.06 means a decrease in the impact velocity by a factor ~/3/2. The impact 
conditions change slightly, but this leads to an abrupt change during the process. The increase in the impact 
velocity (curve 1) indicates the irregular character of the interaction of the elastic plate and the liquid. After 
half the plate is wetted, the contact spot begins to decrease. It goes beyond the framework of the assumptions 
of the problem, and the calculations must be stopped. As the impact velocity decreases (curve 2), the rate of 
wetting is limited and positive during the entire impact stage. For/~ = 0.06, the force that acts on the plate 
from the side of the liquid is bounded, but it can take negative values, as for ~ = 0.04. 

Figure 4 compares the plate deflection (a), the velocity (b) of the plate points, and the distributions of 
the bending stresses in it (c) at themoment of completion of the impact stage in the case of a wave impact on 
the edge of the plate (curves 2) and in its center (curves 1). The impact conditions in both cases are identical, 
except the point of impact. Curves 1 are symmetric relative to the center of the plate (z = 1). The following 
values of the parameters were adopted in the calculations: c~ = 0.314 and ~/= 0.311 [2]; this corresponds to 
the wave impact with a curvature radius at the wave crest of 10 m and a velocity of 3 m/see on a plate fnade 
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from soft steel of thickness 2 cm and length 1 m. In dimensionless variables, the duration of the impact stage 
equals 0.36544 for the central impact and 1.53707 for the impact on the edge. It is seen that the growth of the 
duration of the impact stage causes a more than twofold increase in the deflection (Fig. 4a), the significant 
decrease in the kinetic energy of the beam (Fig. 4b), and the increase in the potential energy of the bending 
stresses (Fig. 4c). In the edge impact, the maximum stresses are reached at a distance of 0.6L from the right 
edge of the beam and are equal to 256 N/mm 2. An analysis shows that the site of impact has a strong effect 
on the deformation of the plate at the end of the impact stage, with other conditions being equal. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01767). 
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